
1

Lab 01:
Solidity, a Smart Contract
Language

Nick Zoghb

2

BLOCKCHAIN FOR DEVELOPERS

ETHEREUM VIRTUAL MACHINE1

4 EXERCISE: SOLIDITY + REMIX

3 QUICK DOCS

2 SOLIDITY: OVERVIEW

LAB OUTLINE

3

BLOCKCHAIN FOR DEVELOPERS

ETHEREUM
VIRTUAL
MACHINE1

4

BLOCKCHAIN FOR DEVELOPERSAUTHOR: NICK ZOGHB

THE ETHEREUM VIRTUAL MACHINE
THE WORLD COMPUTER

● Ethereum implements an execution environment known as the Ethereum Virtual Machine

○ Every node participating in the network runs the EVM

● Nodes will go through the transactions listed in the block they are verifying and run the code as

triggered by the transaction within the EVM

● Every full node does the same calculations and stores the same values

5

BLOCKCHAIN FOR DEVELOPERSAUTHOR: NICK ZOGHB

OPCODES
WHAT MAKES THE COMPUTER TICK

See here for more

https://github.com/Blockchain-for-Developers/evm-opcode-gas-costs/blob/master/opcode-gas-costs_EIP-150_revision-1e18248_2017-04-12.csv

6

BLOCKCHAIN FOR DEVELOPERSAUTHOR: NICK ZOGHB

OPCODES
WHAT MAKES THE COMPUTER TICK

See here for more

http://yellowpaper.io/

7

BLOCKCHAIN FOR DEVELOPERSAUTHOR: NICK ZOGHB

THE ETHEREUM VIRTUAL MACHINE
THE WORLD COMPUTER

● Solidity lets you program on Ethereum, a blockchain-based virtual machine that allows the creation

and execution of smart contracts, without requiring centralized or trusted parties

● Statically typed, contract programming language that has similarities to Javascript and C

○ Like objects in OOP, each contract contains state variables, functions, and common data types

○ Contract-specific features include modifier (guard) clauses, event notifiers for listeners, and

custom global variables

8

BLOCKCHAIN FOR DEVELOPERS

SOLIDITY
OVERVIEW2

9

BLOCKCHAIN FOR DEVELOPERS

Learn X in Y minutes, a whirlwind

tour of your favorite language

WHAT DOES A BANK NEED TO DO?

1. Allow Deposits

2. Allow Withdrawals

3. Balance Checks

AUTHOR: COLLIN CHIN

THE BANK CONTRACT
LEARNING FAST

https://learnxinyminutes.com/

10

BLOCKCHAIN FOR DEVELOPERSAUTHOR: COLLIN CHIN

● contract has similarities to class in other

languages (class variables, inheritance, etc.)

○ Declare state variables outside function,

persist through life of contract

● mapping is a dictionary that maps addresses to balances

○ always be careful about overflow attacks with numbers

○ private means that other contracts can't directly query balances

○ but data is still viewable to other parties on blockchain

● public makes externally readable (not writeable) by users or contracts

THE BANK CONTRACT
LEARNING FAST

11

BLOCKCHAIN FOR DEVELOPERSAUTHOR: COLLIN CHIN

● event - publicize actions to external

listeners

● Constructor - can receive one or many

variables here; only one allowed

● msg provides details about the message that's sent to the contract

○ msg.sender is contract caller (address of contract creator)

THE BANK CONTRACT
LEARNING FAST

12

BLOCKCHAIN FOR DEVELOPERSAUTHOR: COLLIN CHIN

THE BANK CONTRACT
LEARNING FAST

● deposit()

○ Takes no parameters, but we are still

sending Ether!

○ public makes externally readable

(not writeable) by users or contracts

○ Returns user’s balance as an unsigned

integer (uint)

● balances[msg.sender], no this or self required with state variable

● LogDepositMade event fired

13

BLOCKCHAIN FOR DEVELOPERSAUTHOR: COLLIN CHIN

THE BANK CONTRACT
LEARNING FAST

● Withdraw()

○ withdrawAmount parameter

○ Returns user’s balance

● Note the way we deduct the balance right away,

before sending

○ We do this because of the risk of a recursive call that allows the caller to request an amount

greater than their balance

● Increment back only on fail, as may be sending to contract that has overridden 'send' on the

receipt end

14

BLOCKCHAIN FOR DEVELOPERSAUTHOR: COLLIN CHIN

THE BANK CONTRACT
LEARNING FAST

● balance():

○ constant prevents function from editing

state variables

○ Returns user’s balance

○ allows function to run locally/off

blockchain

15

BLOCKCHAIN FOR DEVELOPERSAUTHOR: COLLIN CHIN

THE BANK CONTRACT
LEARNING FAST

() : Fallback function - Called if other functions don't

match call or sent ether without data

○ Typically, called when invalid data is sent

○ Ether sent to this contract is reverted if the

contract fails otherwise

● throw : throw reverts state to before call

16

BLOCKCHAIN FOR DEVELOPERS

QUICK
DOCS3

17

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES3.1

18

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
INTEGERS

// uint used for currency amount (there are no doubles or floats) and for dates (in unix

time)

uint x;

// int of 256 bits, cannot be changed after instantiation

int constant a = 8;

int256 constant a = 8; // same effect as line above, here the 256 is explicit

uint constant VERSION_ID = 0x123A1; // A hex constant

AUTHOR: ALI MOUSA

19

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
INTEGERS

Read the docs

// For int and uint, can explicitly set space in steps of 8 up to 256; e.g. int8, int16,

int24

uint8 b;

int64 c;

uint248 e;

// Be careful that you don't overflow, and protect against attacks that do

// No random functions built in, use other contracts for randomness

AUTHOR: ALI MOUSA

http://solidity.readthedocs.io/en/develop/types.html

20

DEMO
TIME FOR A DEMO

https://remix.ethereum.org/

21

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
TYPE CASTING, BOOLEAN, ADDRESS

// Type casting

int x = int(b);

bool b = true; // or do 'var b = true;' for inferred typing

// Addresses - holds 20 byte/160 bit Ethereum addresses

// No arithmetic allowed

address public owner;

AUTHOR: ALI MOUSA

22

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
TYPE CASTING, BOOLEAN, ADDRESS

// Type casting

int x = int(b);

bool b = true; // or do 'var b = true;' for inferred typing

// Addresses - holds 20 byte/160 bit Ethereum addresses

// No arithmetic allowed

address public owner;

AUTHOR: ALI MOUSA

23

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
ADDRESS, SENDING ETHER

address public owner;

// All addresses can be sent ether

owner.send(SOME_BALANCE); // returns false on failure

if (owner.send(*20 ether*)) {}

// REMEMBER: wrap in 'if', as contract addresses have

// functions executed on send and these can fail

// Also, make sure to deduct balances BEFORE attempting a send, as there is a risk of a

recursive call that can drain the contract

AUTHOR: ALI MOUSA

24

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
ADDRESS, SENDING ETHER

AUTHOR: ALI MOUSA

● Balance of the address in Wei

● Send given amount of Wei to address, throws on failure

● Send given amount of Wei to address, returns false on failure

<address>.transfer(uint256 amount)

<address>.balance

<address>.transfer(uint256 amount)

http://solidity.readthedocs.io/en/develop/types.html#address

25

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
ADDRESS, SENDING ETHER

AUTHOR: ALI MOUSA

● Balance of the address in Wei

● Send given amount of Wei to address, throws on failure

● Send given amount of Wei to address, returns false on failure

<address>.transfer(uint256 amount)

<address>.balance

<address>.transfer(uint256 amount)

http://solidity.readthedocs.io/en/develop/types.html#address

26

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
BYTES

AUTHOR: ALI MOUSA

// Bytes available from 1 to 32

byte a; // byte is same as bytes1

bytes2 b;

bytes32 c;

// Dynamically sized bytes

bytes m; // A special array, same as byte[] array (but packed tightly)

// More expensive than bytes1 - bytes32, so use those when possible

27

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
BYTES

AUTHOR: ALI MOUSA

// same as bytes, but does not allow length or index access (for now)

string n = "hello";

// stored in UTF-8, note double quotes, not single

// string utility functions to be added in future

// prefer bytes32/bytes, as UTF-8 uses more storage

28

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
BYTES

AUTHOR: ALI MOUSA

// Type inference

// var does inferred typing based on first assignment,

// can't be used in functions parameters

var a = true;

// use carefully, inference may provide wrong type

// e.g., an int8, when a counter needs to be int16

29

BLOCKCHAIN FOR DEVELOPERS

DATA TYPES
FUNCTION ASSIGNMENT, DEFAULT VALUES, DELETE, UNWRAP TUPLES

AUTHOR: ALI MOUSA

// Variables can be used to assign function to variable

function a(uint x) returns (uint) {

 return x * 2;

}

var f = a;

f(22); // call

// By default, all values are set to 0 on instantiation

// Delete can be called on most types

// (does NOT destroy value, but sets value to 0, the initial value)

uint x = 5;

30

BLOCKCHAIN FOR DEVELOPERS

DATA
STRUCTURES3.2

31

BLOCKCHAIN FOR DEVELOPERS

DATA STRUCTURES
ARRAYS

AUTHOR: ALI MOUSA

// Arrays

bytes32[5] nicknames; // static array

bytes32[] names; // dynamic array

uint newLength = names.push("John"); // adding returns new length of the array

// Length

names.length; // get length

names.length = 1; // lengths can be set (for dynamic arrays in storage only)

// multidimensional array

uint x[][5]; // arr with 5 dynamic array elements (opposite order of most languages)

32

BLOCKCHAIN FOR DEVELOPERS

DATA STRUCTURES
MAPPINGS

AUTHOR: ALI MOUSA

// Dictionaries (any type to any other type)

mapping (string => uint) public balances;

balances["charles"] = 1;

console.log(balances["ada"]); // is 0, all non-set key values return zeroes

// 'public' allows following from another contract

contractName.balances("charles"); // returns 1

// 'public' created a getter (but not setter) like the following:

function balances(string _account) returns (uint balance) {

 return balances[_account];

}

33

BLOCKCHAIN FOR DEVELOPERS

DATA STRUCTURES
MAPPINGS

AUTHOR: ALI MOUSA

// Nested mappings

mapping (address => mapping (address => uint)) public custodians;

// To delete

delete balances["John"];

delete balances; // sets all elements to 0

// Unlike other languages, CANNOT iterate through all elements in

// mapping, without knowing source keys - can build data structure

// on top to do this

34

BLOCKCHAIN FOR DEVELOPERS

DATA STRUCTURES
STRUCTS

AUTHOR: ALI MOUSA

// Structs and enums

struct Bank {

 address owner;

 uint balance;

}

Bank b = Bank({

 owner: msg.sender,

 balance: 5

});

35

BLOCKCHAIN FOR DEVELOPERS

DATA STRUCTURES
STRUCTS

AUTHOR: ALI MOUSA

// or

struct Bank {

 address owner;

 uint balance;

}

Bank c = Bank(msg.sender, 5);

c.amount = 5; // set to new value

delete b;

// sets to initial value, set all variables in struct to 0, except mappings

36

BLOCKCHAIN FOR DEVELOPERS

DATA STRUCTURES
ENUMS

AUTHOR: ALI MOUSA

// Enums

enum State { Created, Locked, Inactive } // often used for state machine

State public state; // Declare variable from enum

state = State.Created;

// enums can be explicitly converted to ints

uint createdState = uint(State.Created); // 0

37

BLOCKCHAIN FOR DEVELOPERSAUTHOR: NICK ZOGHB

WHERE DATA GOES
NOTE ON MEMORY AND STORAGE

● Data locations: memory vs. storage vs. stack - all complex types (arrays, structs) have a data location

○ memory does not persist, storage does

● Default is storage for local and state variables; memory for function arguments

○ For most types, the data location to use can be explicitly set

● The stack holds small local variables

○ Used for values in intermediate calculations

○ General consensus is not to interact with it as a developer

■ As in this case

https://ethereum.stackexchange.com/questions/23720/usage-of-memory-storage-and-stack-areas-in-evm

38

BLOCKCHAIN FOR DEVELOPERS

EXERCISE4

39

BLOCKCHAIN FOR DEVELOPERS

REMIX IDE
THE WORLD ON A SINGLE WEB APP

AUTHOR: NICK ZOGHB

40

BLOCKCHAIN FOR DEVELOPERS

REMIX IDE
THE WORLD ON A SINGLE WEB APP

AUTHOR: NICK ZOGHB

41

BLOCKCHAIN FOR DEVELOPERS

REMIX IDE
THE WORLD ON A SINGLE WEB APP

AUTHOR: NICK ZOGHB

42

BLOCKCHAIN FOR DEVELOPERS

REMIX IDE
THE WORLD ON A SINGLE WEB APP

AUTHOR: NICK ZOGHB

43

BLOCKCHAIN FOR DEVELOPERS

THINGS TO DO
UH-OH, TIME TO WORK

AUTHOR: NICK ZOGHB

We want you to flex your creative problem-solving skills in this new

environment. With a mind for clean code, use the Remix IDE to implement the

following:
● A ‘greeter’ contract with a 'greet' method that returns the string “hello, World!”

○ BONUS: The user should be able to change the greeting without redeploying the contract

● The Fibonacci function

○ Iteratively

http://remix.ethereum.org

44

BLOCKCHAIN FOR DEVELOPERS

THINGS TO DO (CONTINUED)
UH-OH, TIME TO WORK

AUTHOR: NICK ZOGHB

● An XOR function

○ Input ‘1’ or ‘0’

○ This does not require any bitwise operations!

○ BONUS: Input a string of 1's and 0's, e.g. "10001110101101"

● A method to concatenate two strings

○ Importing a module is fine

○ BONUS: Do not use a module

45

SEE YOU
NEXT TIME

Ethereum Mechanics

Ethereum

Ðapps

Smart Contracts

Types of Transactions

Types of Accounts

Gas

