Lab O1:
Solidity, a Smart Contract Y 4

Language \, 4
vy
\ 4

BLOCKCHAIN

AT BERKELEY

Nick Zoghb

LAB OUTLINE

o } ETHEREUM VIRTUAL MACHINE

P> SOLIDITY: OVERVIEW
P> QUICK DOCS

} EXERCISE: SOLIDITY + REMIX

BLOCKCHAIN

ETHEREUM
VIRTUAL
MACHINE

CCCCCCCCCC

THE ETHEREUM VIRTUAL MACHINE

e Ethereum implements an execution environment known as the Ethereum Virtual Machine
o Every node participating in the network runs the EVM

e Nodes will go through the transactions listed in the block they are verifying and run the code as
triggered by the transaction within the EVM

e Every full node does the same calculations and stores the same values

dllllll
TTTTTTT

BLOCKCHAIN

OPCODES

See here for more

Value

0x00

Ox01

Ox02

0x03

O0x04

Ox05

O0x06

O0x07

Ox08

Ox09

Ox0a

Ox0b

O0x10

Ox11

Mnemonic

STOP

ADD

MUL

SUB

DIV

SDIV

MOD

SMOD

ADDMOD

MULMOD

EXP

SIGNEXTEND

LT

GT

Gas Used

(exp==0)710:(10 + 10 * (1 + log256(exp}))

5

3

3

Subset
ZEero
verylow
low
verylow
low

low

low

low
mid

mid

low
verylow

verylow

Removed from stack Added to stack Notes
0 0 Halts execution.

Addition operation

2 1 Multiplication operation.

2 1 Subtraction operation.

2 1 Integer division operation.
2 1 Signed integer division ope
2 1 Modulo remainder operatic
2 1 Signed modulo remainder
3 1 Modulo addition operation.
3 1 Modulo multiplication oper
2 1 Exponential operation.

2 1 Extend length of two's corr
2 1 Less-than comparison.

2 1 Greater-than comparison.

BLOCKCHAIN

https://github.com/Blockchain-for-Developers/evm-opcode-gas-costs/blob/master/opcode-gas-costs_EIP-150_revision-1e18248_2017-04-12.csv

OPCODES

Here given are the various exceptions to the state transition rules given in section 9 specified for each instruction,
together with the additional instruction-specific definitions of J and . For each instruction, also specified is o, the

additional items placed on the stack and 4§, the items removed from stack, as defined in section 9.

Os: Stop and Arithmetic Operations

All arithmetic is modulo 2°°® unless otherwise noted.
Value Mnemonic 8 @ Description
0x00 STOP 0 0 Halts execution.
0x01 ADD 2 1 Addition operation.
pe 0] = p (0] + p 1]
See here for more 0x02 MUL 2 1 Iﬁ.f[lrultip_lica,tic-n operation.
pe 0] = g [0] X pag[1]
0x03 SUB 2 1 Subtraction operation.
P [0] = 1 [0] — pag[1]
0x04 DIV 2 1 Integer division operation.
, o if pl1] =0
pa(0] = {L,us [0] = . [1]| otherwise
0x05 SDIV 2 1 Signed integer division operation (truncated).
0 i e [1]=10
pel0] = § —22°° if p[0] = -2 A p[1] = -1

sgn(pes[0] + pg[1]) [|ps[0] + p5[1]]] otherwise
Where all values are treated as two's complement signed 256-bit integers.
Note the overflow semantic when —2%°° is negated.

0x06 MOD 2 1 Modulo remainder operation.
0 if . [1]=0
p[0] = L
[0l mod p (1] otherwise

BLOCKCHAIN

http://yellowpaper.io/

THE ETHEREUM VIRTUAL MACHINE

e Solidity lets you program on Ethereum, a blockchain-based virtual machine that allows the creation
and execution of smart contracts, without requiring centralized or trusted parties

e Statically typed, contract programming language that has similarities to Javascript and C
o Like objects in OOP, each contract contains state variables, functions, and common data types
o Contract-specific features include modifier (guard) clauses, event notifiers for listeners, and

custom global variables

BLOCKCHAIN

SOLIDITY
OVERVIEW

CCCCCCCCCC

THE BANK CONTRACT

1- contract SimpleBank {
2 mapping (address => uint) private balances;
3 address public owner;
4 event LogDepositMade(address accountAddress, uint amount);
5
G- function SimpleBank() {
WHAT DOES A BANK NEED TO DO? 7 owner = msg.sender;
8 }
9
. 10 - function deposit() public returns (uint) {
l° A“OW DepOSItS 11 balances[msg.sender] += msg.value;
12 LogDepositMade(msg.sender, msg.value);
. 13 return balances[msg.sender];
2. Allow Withdrawals -
16 - function withdraw(uint withdrawAmount) public returns (uint remainingBal) {
17 - if(balances[msg.sender] >= withdrawAmount) {
3- BalanCe CheCkS 18 balnnces[mgg.sender] -= WwithdrawAmount; l
19 - i1f (Imsg.sender.send(withdrawAmount)) {
20 balances[msg.sender] += withdrawAmount;
21 }
22 }
23 return balances[msg.sender];
24 }
Learn XinY minutes, a whirlwind 25
. 26 - function balance() constant returns (uint) {
tour of your favorite language 27 return balances[msg.sender];
28 }
29
30 - function () {
E A throw;
32 }
33 1}

BLOCKCHAIN

https://learnxinyminutes.com/

THE BANK CONTRACT

contract SimpleBank {

mapping (address => uint) private balances;

languages (class variables, inheritance, etc.)

address public owner;

1,
2
3
4
5
contract has similaritiesto class in other 6
4
8
o)
10
11
2

o Declare state variables outside function,
persist through life of contract
mappingis adictionary that maps addresses to balances
o always be careful about overflow attacks with numbers
o private meansthat other contracts can't directly query balances
o butdatais still viewable to other parties on blockchain

public makes externally readable (not writeable) by users or contracts

BLOCKCHAIN

THE BANK CONTRACT

event - publicize actions to external

event LogDepositMade(address accountAddress, uint amount);

listeners function SimpleBank() {

owner m5g.5ender;

o~ Oyl o

Constructor - canreceive one or many }
variables here; only one allowed
msg provides details about the message that's sent to the contract

o msg.sender iscontract caller (address of contract creator)

BLOCKCHAIN

THE BANK CONTRACT

: 14 - function deposit ublic returns (uint
o deposit() aasn Wnet #
15
: 16
o Takesno parameters, but we arestill balances[msg.sender] += msg.value;
sending Ether! 15
19
o public makes externally readable 20 LogDepositMade(msg.sender, msg.value);
i |
(not writeable) by users or contracts 22
. 23 return balances[msg.sender];
o Returnsuser’s balance as an unsigned 24 }

TR

integer (uint)
e balances[msg.sender], nothis or self required with state variable

e LogDepositMade event fired

BLOCKCHAIN

THE BANK CONTRACT

function withdraw(uint withdrawAmount) public returns (uint remainingBal) {

if(balances[msg.sender] >= withdrawAmount) {

e Withdraw()

o withdrawAmount parameter

balances[msg.sender] -= withdrawAmount;

if (Imsg.sender.send(withdrawAmount)) {

o Returns user’s balance

balances[msg.sender] += withdrawAmount;

e Notethe way we deduct the balance right away, y
}

bef()re Sending : return balances[msg.sender];

o We do this because of the risk of a recursive call that allows the caller to request an amount
greater than their balance
e Increment back only on fail, as may be sending to contract that has overridden 'send' on the

receipt end

BLOCKCHAIN

THE BANK CONTRACT

function balance() constant returns (uint) {
e balance():

o constant prevents function from editing Fetiien boldncestsg. sender]s
state variables }

o Returns user’s balance

o allows function to run locally/off

blockchain

BLOCKCHAIN

THE BANK CONTRACT

() : Fallback function - Called if other functions don't
match call or sent ether without data
o Typically, called when invalid data is sent
o Ethersentto this contract is reverted if the
contract fails otherwise

e throw:throw reverts state to before call

function () {

throw;

BLOCKCHAIN

CCCCCCCCCC

DATA TYPES

CCCCCCCCCC

DATA TYPES

uint Xx;

1nt constant a = 8;
1Nnt256 constant a = 8;

uint constant VERSION_ID = 6x123A1;

BLOCKCHAIN

DATA TYPES

Read the docs

uint8 b;
1nt64 c;
uint248 e;

BLOCKCHAIN

http://solidity.readthedocs.io/en/develop/types.html

DEMO

TIMEFORADEMO

https://remix.ethereum.org/

DATA TYPES

int x = int(b);

bool b = true;

address public owner;

BLOCKCHAIN

DATA TYPES

int x = int(b);

bool b = true;

address public owner;

BLOCKCHAIN

DATA TYPES

address public owner;
owner .send(SOME_BALANCE) ;

if (owner.send(*20 ether*)) {}

BLOCKCHAIN

DATA TYPES

e Balance of the address in Wei

<address>.balance

e Send given amount of Wei to address, throws on failure

<address>.transfer(uint256 amount)

e Send given amount of Wei to address, returns false on failure

<address>.transfer(uint256 amount)

BLOCKCHAIN

http://solidity.readthedocs.io/en/develop/types.html#address

DATA TYPES

e Balance of the address in Wei

<address>.balance

e Send given amount of Wei to address, throws on failure

<address>.transfer(uint256 amount)

BLOCKCHAIN

http://solidity.readthedocs.io/en/develop/types.html#address

DATA TYPES

oyte a;

oytes2 b;

oytes32 c;

bytes m;

BLOCKCHAIN

DATA TYPES

string n = "hello”;

BLOCKCHAIN

DATA TYPES

var a = true;

BLOCKCHAIN

DATA TYPES

function a(uint x) returns (uint) A

return x * 2;

}

var f = a;
f(22);

uint x = 35;

BLOCKCHAIN

DATA
STRUCTURES

CCCCCCCCCC

DATA STRUCTURES

oytes32[5] nicknames;

oytes32[] names;

uint newLength = names.push("John");

names. length;

names. lengt

I
—
-

uint x[][5];

BLOCKCHAIN

DATA STRUCTURES

mapping (string => uint) public balances;
balances["charles"] = 1;

console.log(balances["ada"]);

contractName.balances("charles");

function balances(string _account) returns (uint balance) {

return balances|[_account]:

BLOCKCHAIN

DATA STRUCTURES

mapping (address => mapping (address => uint)) public custodians;

delete balances|"John"]:

delete balances;

BLOCKCHAIN

DATA STRUCTURES

struct Bank {
address owner;

uint balance;

}
Bank b = Bank({

owner: msg.sender,

balance: 5

})

BLOCKCHAIN

DATA STRUCTURES

struct Bank {
address owner

uint balance;

}

Bank ¢ = Bank(msg.sender, 5);

c.amount = 5;

delete b;

BLOCKCHAIN

DATA STRUCTURES

enum State { Created, Locked, Inactive }
State public state;
state = State.Created;

uint createdState = uint(State.Created);

BLOCKCHAIN

WHERE DATA GOES

e Data locations: memory vs. storage vs. stack - all complex types (arrays, structs) have a data location
o memory does not persist, storage does
e Defaultis storage for local and state variables; memory for function arguments
o For most types, the data location to use can be explicitly set
e The stack holds small local variables
o Used forvalues in intermediate calculations
o General consensus is not to interact with it as a developer

m Asin this case

BLOCKCHAIN

https://ethereum.stackexchange.com/questions/23720/usage-of-memory-storage-and-stack-areas-in-evm

EXERCISE

CCCCCCCCCC

REMIX IDE

ol 0 @ % £ *

browser/ballot.sol *

» browser 1 pragma solidity /0.4.0;
2~ contract Ballot {

3
4~

Co 1 &Y U1

9
10 ~
il
12
13
14
15
16
17
18
19 =
20
Faa |
22
23
24
25
26
rardi

¥ 0

struct Voter {
uint weight;
bool voted;
uint8 vote;
address delegate;
3
struct Proposal {
uint voteCount;

}

address chairperson;
mapping(address => Voter) voters;
Proposal [] proposals;

/// Create a new ballot with $(_numProposals) different proposals.
function Ballot(uint8 _numProposals) public {

chairperson = msg.sender;

voters[chairperson].weight = 1;

proposals.length = _numProposals;

}

/// Give $(toVoter) the right to vote on this ballot.
/// May only be called by $(chairperson).
function giveRightToVote(address toVoter) public {

[2] only remix transactions, script ¥ Q Search transactions

» Compile Run Settings Analysis Debugger Support

, _Auto
= Start to compile & .
~ P 7 compile

Ballot j Details | Publish on Swarm

Static Analysis raised 2 warning(s) that requiresX

Ballot =

Listen on network

BLOCKCHAIN

REMIX IDE

«

1

1+

browser/ballot.sol browser/Example.sol

pragma solidity /10.4.0;

2 - contract Example {

x

function do_something() constant returns (string) {

return "hello";

@ [2] only remix transactions, script ~

QSearch transactions

Listen on network

» Compile m Settings Analysis Debugger Support

ap Auto
" compile

= Start to compile

Example j Details Publish on Swarm
Static Analysis raised 1 warning(s) that requires¥X

browser/Example.sol:4:5: Warning: No visibility sX

function do something() constant returns (str

~

Spanning multiple lines.

browser/Example.sol:4:5: Warning: Function state X

function do_something() constant returns (str

~

Spanning multiple lines.

BLOCKCHAIN

REMIX IDE

Compile Run

Environment

Settings Analysis Debugger Support

JavaScript VM & VM (-);l i

Account Oxca3...a733c (100 ether) j 'R
Gas limit 3000000 g
Value 0 wei ;I
Environment JavaScript VM [Example -
Account v 0xca3...a733c (100 ether)
0x147...c160c (100 ether) r— ——— e
Gas limit 0x4b0...4d2db (100 ether) HAR e lieey Wl nahans thodress
0x583...40225 (100 ether) .
Value 0xdd8...92148 (100 ether) J
- 0 pending transactions E] = »
0 contract Instances

Compile Run

Environment

Settings Analysis Debugger Support

JavaScript VM & VM (-)j i

Account Oxca3...a733c (99.99999999989985 :I B
Gas limit 3000000 z
Value 0 wei j
Example -
Create
Load contract from Address At Address

0 pending transactions

do_something

SREN <

Example at 0x692...77b3a (memory) B

BLOCKCHAIN

REMIX IDE

Compile Run

Environment

Settings Analysis Debugger Support

JavaScript VM £ VM (-)j i

Oxca3...a733c (99.999999899999985' ;I 0

Account
Gas limit 3000000 s
Value 0 wei ;l
Example -
Create
Load contract from Address At Address
0 pending transactions SRR 2
X
- Example at 0x692...77b3a (memory) 0

Compile Run Settings Analysis Debugger Support

Environment JavaScript VM &£ VM (-) j H
Account Oxca3...a733c (99.99999980999985. j 0
Gas limit 3000000 .
Value 0 wei ;I
Example v
Create
Load contract from Address At Address
0 pending transactions E] bk >
X
v Example at 0x692...77b3a (memory) D

do_something)
0: string: hello

creation of Example pending...

[vm] from:0xca3...a733c, to:Example.(constructor), value:0 wei, data:0

x606...10029, 0 logs, hash:0xdOf...0fds8d Details Debug

Debug

call to Example.do something

[call] from:0xca35b7d915458ef540ade6068dfe2f44e8fa733c, to:Example.do
something(), data:c3dl5...15da7, return:

{
"0": "string: hello"

}

>

[call] from:0xca35b7d915458ef540ade6068dfe2f44e8fa733¢c, to:Example.do_

something(), data:c3d15...15da7, return: Details Debug

: "0": "string: hello"
}
from 0xca35b7d915458ef540ade6068dfe2f44e8fa733c Iy
to Example.do something() 0x692a70d2e424a56d2c6c27aa97d1a86395877b3a Iy
transaction cost 21934 gas (Cost only applies when called by a contract) I
execution cost 662 gas (Cost only applies when called by a contract) Iy
input c3d15da7 Iy
decoded input {1 By
decoded output
": "string: hello"
logs oo

BLOCKCHAIN

THINGS TO DO

We want you to flex your creative problem-solving skills in this new
environment. With a mind for clean code, use the Remix IDE to implement the

following:

o A‘greeter’ contract with a 'greet’' method that returns the string “hello, World!”
o BONUS: The user should be able to change the greeting without redeploying the contract
e The Fibonaccifunction

o lteratively

BLOCKCHAIN

http://remix.ethereum.org

THINGS TO DO (CONTINUED)

e An XOR function

o Input ‘1’ or ‘0’

o This does not require any bitwise operations!

o BONUS: Inputastringofl'sand0's,e.g. "10001110101101"
e A method to concatenate two strings

o Importing a module is fine

o BONUS: Do not use a module

BLOCKCHAIN

SEE YOU
NEXT TIME

Ethereum Mechanics

Ethereum

Dapps

Smart Contracts
Types of Transactions

Types of Accounts
Gas

BLOCKCHAIN

